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Abstract 

In this paper formulas are obtained by means of the coherent-state method for calculating 
the radiation power of a nonstationary quantum system of N charged particles whose 
Hamiltonian is a general quadratic form with respect to coordinates and momenta. The 
transitions between the coherent states and the Fock states of this system are discussed. 
The radiation is calculated both in the dipole approximation and strictly. As an example, 
the radiation of a charge in homogeneous varying electric and magnetic fields is found. 
The classical limit is considered. 

1. Introduction 

The radiation of  nonstationary classical and quantum systems and the connec- 
tion between quantum and classical formulas for calculating the radiation have 
been discussed by Schwinger (1949, 1954, 1973). In considering the radiation 
o f  nonstat ionary quantum systems, the coherent-state representation (Glauber, 
1963a, b, c) proves to be the most effective that enables us to visualize the 
interconnection between quantum and classical approach to the radiation of  
the system. As the coherent  states describe the wave packet  moving along the 
classical trajectory in the phase space, the quantum coherent-state method is 
close to the classical investigation. The coherent-state method is extremely con- 
venient in calculating the radiation of  nonstat ionary systems whose Hamiltonian 
is a general quadratic form with respect to coordinates and momenta.  The 
coherent and Fock states and the Green's function for these systems have been 
determined by Malkin et at., (1971) and Dodonov et al. (1974). 

Below the formulas are obtained for calculating the radiation power of  the 
system of  N charged particles with the nonrelativistic nonstat ionary quadratic 
Hamiltonian. It should be noted,  however, that the use of  the proper-time 
representation gives us the possibility of  employing the method developed 
below not only for nonrelativistic but for relativistic systems. 
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Earlier the problem of the radiation of nonstationary quadratic systems has 
been considered partially in Ivanova et al. (1974; 1975b). The radition of the 
system with the stationary quadratic Hamiltonian of the special form has been 
discussed in Ivanova et al. (1975a). 

In this paper the radiation is calculated according to perturbation theory 
to the first order in the magnitudes of  the charges. It is necessary to point out, 
however, that the coherent-state method allows us to evaluate the dipole 
radiation of an arbitrary nonstationary quadratic system not only taking into 
account the perturbation theory but exactty, since the system of charges inter- 
acting with the electromagnetic field in the dipole approximation is described 
by a quadratic Hamiltonian. The formulas given below may be obtained from 
the exact transition amplitudes to the first order in the magnitudes of the 
charges. 

2. Radiation o fan  Arbitrary Time-Dependent Quadratic System 

We consider a quantum system of N charged particles whose Hamiltonian 
is quadratic with respect to coordinates qa and momenta pa of particles (Holz, 
1970; Malkin et al., 1971, 1973): 

H o ( t ) =  ~ ab a b ab a b ab a b ab a b [(B1)i] Pi P/ +(B2)i] Pi qj + (B3)i] qi P/ + (B4)i] qi q/ 
a,b,i,] 

+ (C1)iapi a + (C2)iaqi a] (h = c = 1) (2.1a) 

Here Bi] b and C/a are arbitrary functions of time. Qa are real numbers and 
B~ .b = B*~ a (* means a complex conjugation). The superscripts designate the 
particles and run over 1 , 2 , . . . ,  N, and the subscripts are the usual Cartesian 
coordinates of  three-dimensional vectors. 

Let us introduce the 3N vector q = (q/} with the subscript running over 
I, 2 . . . .  3Nand constructed corresponding to the rule Tq = (ql . . . .  , qa . . . . .  
qN) and 3Nvector Tp = (pl . . . .  pa . . . . .  pN), the index T representing the 
transposition operation. The rule of the abbreviated record is: If the the super- 
script is present, the subscript runs over 1,2, 3; if the superscript is absent, 
the subscript runs over 1, 2 , . . . ,  3N. Because the summation over tile super- 
scripts and subscripts is always independent, it is possible to rewrite the 
Hamiltonian Ho(t ) in the matrix form: 

Ho(t ) = QBQ + CQ (2.1b) 

where Q] = p], Q 3 N + j  = q],  B is a 6N x 6N matrix, and C is a 6N vector: 

Q= , B ~  C -  
B3 B4 C2 

Let the Hamiltonian (2.1) be stationary before the moment of time tin. 
We designate this stationary Hamiltonian as//in. Let the Hamiltonian Ho(t) 
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be stationary after the moment of time tf again. We designate it as Hr. In 
particular, tin -+ _oo, tf ~ ~ may be. In what follows the subscript fstands for 
the values corresponding to the final Hamiltonian Hf, and the subscript in stands 
for the values corresponding to the initial Hamiltonian Hin. 

In (Malkin et al., 1971 ; t 973) the 6N Hermitian linear time-dependent 
invariants have been constructed for the Hamiltonian Ho(t): 

where 

I(t) = A(t)Q + 8 (t), i ~t I(t) = [H o, I(t)] (2.2) 

A2 = T e x p  i d~a2(B + fl*) 
A ~- 2x3 A4 ti~ 

8~-i 
tf ( 03N -E3N ] 
f d~Aa2C, 02 = i \E3N 03N] 

tin 

(2.3) 

here E3N is the 3N x 3N unit matrix; Tstands for the antichronological product. 
The linear transformation (2.2) is canonical. Matrix A is the real symplectic 
matrix and, hence, Ao2 TA = oz. 

We can introduce, instead of I(t), lowering and raising operators Aj(t), 
A~(t): 

Aj(t ) = (t/X/~) [ili(t ) + 13N+j(t)] (2.4) 

[A i, Atxl = 6jk, j, k = 1, 2 . . . . .  3N 

Using (2.2) we rewrite (2.4) in the form 

where 

Ai(t) = ~2 ~ [(Xp)jkPx + (Xq)jkqx + Ajl (2.5) 

Xp = A 3 + iA1, Xq = A 4 + iA2, A] : i6j + 63N+j (2.6) 

In (Malkin et al., 1971; 1973) the coherent states I~; t) and the Fock states 
In; t) of a system with the Hamiltonian Ho(t ) have been found. The states 
[e; t) are eigenstates of lowering operators A i and satisfy the Schr6dinger 
equation: 

( i ~ - H o )  l,,;t)=O (2.7) A j ( t )  l ~; t )  = ~IL~; t ) ,  
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]Qt; t) are expressed in terms of  A(t) and 8 ( 0  , at= (~1 . . . .  , aaN) being constant 
complex numbers. The real and imaginary parts of  the vector ~t represent corre- 
spondingly the initial average of  coordinates and momenta.  The coherent 
states i~; t) are the generating functions (Glauber, t963a,  b, c) for the Fock 
states t n; t). The states [ n; t} are the eigenstates of  the invariants A/tA& They 
are orthonormatized and satisfy the Schr6dinger equation: 

[n; t)=- l--llnj; t), n j = 0 ,  1 ,2  . . . .  
/ 

(°01 i ~ t - H  I n ; t ) = O ,  ( m ; t l n ; t ) = 6 m , ~  

ATAjln; t) = nj I n; t) (2.8) 

Ajlnj;t)=(nj)l/2lnj- 1;t) ,  ATlnj;t)=(nj + 1)l/21nj+ 1;t)  

in; t) are expressed in terms of  Hermite polynomials of  3N variables (Erd61yi, 
1953). 

Let the integrals of  motion lin =min Q + 6in and the coherent states ia; in) 
correspond to the stationary initial Hamittonian// in , and the integrals of  
mot ion I f  = AfQ + 6y and the coherent states Ilk;f) correspond to the stationary 
final Hamiltonian Hr. As the initial (final) Hamiltonian is quadratic with respect 
to Iin(lf) , it is possible to transform the integrals of  motion Iin to the new 
integrals of  motion Iin, using the linear canonical transformation in the form 
(2.2): 

Iin = ,~Iin + zg ¢ ( 2 . 9 )  

The invariants Iin define the new raising and lowering operators --IA~' A M and the 
new coherent s~ates Ig ; in}. Sometimes one can choose a transformation (2.9) 
that reduces the Hamiltonian// in to the canonical form 

Hin = E (ain)][(a~n)j(a~in)j + ½1 (2 . t0)  
J 

the new coherent states 1~; in) being the generating functions for the stationary 
states ofHin.  The frequencies (~in)j  may be both positive and negative. Let 
us note that ' the fomula (2.10) makes it possible to find the spectrum of  the 
system. For the particular potential it has been determined in Ivanova et al. 
(1975a). 

The state I=; t) (1~; t)) is the time evolution of the state which at the initial 
moment  of  time coincides with the state [=; in)(]~; in)). The time evolution 
is determined by the evolution operator Uo of the Hamiltonian Ho(t ) as 
Uo(t, tin ) tot; in) = IQt; t)[U0(t,  tin)[~; in) = I~; t)] .  The explicit expression for 
Uo is given in Malkin et al. (1971; 1973). 

Let us consider the radiation of the system with the Hamittonian (2.1). tt 
should be noted that the radiation of  the charges with the Hamittonian Ho 
at a moment  of  time t > tf has been discussed earlier in Ivanova et al. (1974), 
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whereas the formulas obtained below are valid for an arbitrary moment .  In 
case of  t > t f  these formulas will be considerably simplified and will trans- 
form to formulas of  the paper by Ivanova et al. (1974). 

The vector potential of  the radiation field in the Schr6dinger representation 
can be written in the form 

~¢rad(qa) = ~ ~V-~h] ex '°  [bx'a exp (&xqa) + b~ 'a  exp ( - ikaqa) ]  
X,o" 

(2.11) 

where b?x,~ (ba,a)  are the boson raising (lowering) operators of  a photon with 
the frequency wx,  the wave vector k x, and with the polarization vector ex,a- 
We can rewrite d r a d ( q  a) in terms of  invariants 

bx,a(t)  = ba,~ exp (/coat) and btx,a(t) = btx,a exp (=-i¢oat) 

satisfying the following relations: 

ba,~(t)l na,~; t) = (na,a)l/2[ na,a - 1; t) 

b~,o( t ) lnx  a ; t ) = ( n a , a  + na, ~ + l ; t )  

where Ha,o[ nx,a; t) - [nrad; t) are the stationary states of  the radiation field. 
Let the initial state be Inrad; t) and the final state be [mrad; t). I f  we discuss 
the transition with the emission of  one photon corresponding to the raising 
operator btx,o, we must suppose that nx, a + 1 = rnx, ~ and nx,,a, + 1 ~a mx,#(X'  ' 
0', 4 = X, o). In case of  all nx,a being equal to zero at the initial moment  of  time 
we deal with the spontaneous radiation. 

The radiation field and the charged particles (2.1) are considered as the 
unified system whose Hamiltonian H(t)  is obtained from the Hamiltonian Ho( t  ) 
by the substitution of  pa _ e a ~¢/rad(qa) for pa (here e a are the charges of  the 
particles) and by the addition of  the Harniltonian of  the free radiation field 
H r a  d : 

H(t)  = Ho( t  ) + Hrad + Hint(t) (2.12) 

The interaction Hamiltonian Hint(t  ) to the first order in the magnitudes of  
the charges can be written as follows: 

Hint = - ( a B Q  + QBa + Ca) (2.13) 

where the 6N vector Ta = ( T ~ r a d ,  T03N ) is constructed from the vector 
potential of  the radiation field as Td:~ra d = (el,~rlad . . . . .  ea.~faad . . . . .  eN,~r~ad) ,  

~¢rad(q ) =  ~¢rad. 
Let us introduce the notation let; nrad; t} ~- lef; t)lrlrad ; t )( ln;  nrad; t} ----- 

In; t> lnrad; t ))  for the states of  the unified system consisting of the charges 
and the radiation field in case of  the interaction between the field and the 
charges being absent. These states at the initial moment  of  time are designated 
by [0t; nrad; in). The wave function of  the Hamiltonian (2.12) at an arbitrary 
moment  t can be written as U(t, tin)]0~; nrad; in), where U is the evolution 
operator of  H(t).  
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The transition amplitude d/#,~(t) between the coherent states I~; in) and 
I~;f[ t ]  ) at a moment  t is as follows: 

J/[~,a(t) = ( f3;mrad;f[t] lU(t ,  tin) t~t; nrad ; in) (2.14) 

The transition probability between such states is [d#~,a(t)l 2. The amplitude 
d//13,a to the first order in charges is 

t 

Jt'~,~(t) = - i  j' (~; mr~a; f [ t ] l f o ( t ,  r) U~aa(t, r) 
to 

x Hin t (r)Uo(r,  tin) Urad(~', tin)[a; nrad ; in) dr ,  j n r a  d ; t )  5/= l m r a d  ; t )  

(2.15) 

where Ura d is the time evolution operator of  the Hamiltonian Hrad and t o is 
the moment  of  time at which the charges and the radiation field begin to 
interact (t > ' to  I> tin). 

Introducing the 6N vectors R and F and the 6N x 6N matrix L as follows: 

R = F = 

one can obtain 

Q = L R -  LF (2.16) 

Using the formula (2.16), we can present the exponential factors exp (+ikq b) 
in the expression for the vector potential of  the radiation field (2.1 I) as the 
Weyt unitary displacement operators DsC(K be) = exp [K b C(A+)sc - (g*)b~AsC ] " 

where 

exp ( _ & q b )  = exp [¢ i b(t)] I-I De c [Kbc(t)l (2.17) 

K s  Z c = -  kj(X? ) j (2.1S) 
1 ],s ,c 

The Weyl operators act upon the coherent states in the following way (Glauber, 
1963a, b, c): 

I - I  c bc D s (K s ) l { a k C t } ; t ) = l { a k d + K b ~ ) ; t ) e x p ( ~ 2  b) (2.19) 
C,S 

where 

tp2 b = i l m  ~ bc . c K s(a )s , t{ekd}; t) -- tot; t) (2.20) 
C~S 
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It is easy to express the vector Q in terms of  the vector R in the amplitude 
(2.15). Then we must use the obvious identity 

Uo(t , r)I~(.c)Uo(r , tin ) =Ia(t)Uo(t, tin), c~ = 1, 2 . . . . .  6N (2.21) 

for the integrand of  (2.t  5) and express the vector R in terms of  the vector 
T y  = (TA, :rA~), R being 

R = L - 1 M y -  L - 1 M r +  F (2.22) 

here 

r = ~ A ' M3 M4 \ f 
(2.23) 

v ,  =,HfXp - Xq(Xa)]l(x )A -1, = (x )iXalXp1-1 

Ma = V~[Xq - Xp(X~)fl(X~)f]-i ,  M4 = ~/2[(~k~)f-- (~k/~)f~k;l~kq I-1 

We shall consider now the spontaneous transitions between coherent states 
10t; in) and l[3;f) with the emission of a photon with the frequency co, the 
wave vector k, and the polarization vector e. Let the averaging of the initial 
states of  the charges be described by the density matrix 

Pin = f d211Pin(0t) lot; in)(~; in l 

where Pin is the Glauber P function (Glauber, 1963). Let the summation over 
the final states be described by the density matrix 

p/. = f dz[3e/(~)113; f ) ( [ 3 ; f  I 

Then, using the form suggested by Schwinger (1949; 1954), we find the power 
radiated into a unit solid angle enclosing nk (here nk is the unit vector directed 
along k), and contained in a unit frequency interval about the frequency co as 
follows: 

.~(n k, e, co, t) =4--~ drd2ad213Pin(~) xPf([3)e-i°~rj(t - ½r, t)J*(t + ½r, t) 

(2.24) 

In the dipole approximation taking into account the commutator  [a, Q] = 0, we 
obtain for Jaip(z, t ) t he  following expression: 

Jdip('r, t) = [~W(7", t ) g +  h(r, t)g]([3;f[t] tot; t) (2.25) 

where 

rw(r, t) = -- [B('r) + TB('c)]L(r)L -1 (t)M(t) 

h(r, t) = - C ( r )  + [B0" ) + rB(r)]L(z)[L- t ( tN( t )r ( t )  + F(~-) - F(t)] (2.26) 
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and o are the 6N vectors rg  = (Te, 7"13,), T o __ (TAN,  T03N) ' a3N being the 3N 
vector To 3N = (e l e . . . . .  eae . . . . .  eUe). It is easy to obtain the nonradiative 
transition amplitude (13;f[t] IQt; t) at an arbitrary moment of time t by evaluat- 
ing the corresponding Gaussian integral: 

(~ ; f [ t ]  la; t) = ( 0 ; f [ t ]  I 0; t) exp [ -½( ta t  2 + 11312) + s g -  ½~Sg] (2.27) 

where 
s l = (1/X/2)(A* - X~3,pl/~) + (i/2) { [TMa(X~)~-I -- TXplM4 ] A3~ 

-- (TM3 Xfll + T X p t M 3 ) ~  } 
_ T . - 1  , S 2 = (1/N/2)[A f (~kp)f(~)71Af]  + (i/2)([(?t?p)flM4 + _/l/14(;k~) f ~ f  

+ [(~kp?)ylM3 - TM4)k~llA ) 

S1 = - r • l  (ix/-2M3 + Xp?), $2 = - iv /2rXplM4 
(2.28) 

S 3 = iV/2(~k~)?IM3, S 4 : (~kJ)? 1 [/~-2M 4 - T(~kp)f] 
The amplitude (0; f [ t ]  10; t) is 

(0; f [ t ]  10; t) = 23N/4 {det [i(X~)iM7ll )-1/2 exp {-(1~12 + t~fl 2)/4 
t 

- i f Im(/XA* - lXfA?)dr/2 + (i/4)[A(X~ + v ~ T M 3 ) V ' A  
rin 

+ AT(Xpf + ~/TTM4)()t~)j--1A 7 + ~/2A(TXplM4 

T , -1 * - M3(X~)f )/~f]} (2.29) 

The amplitude (2.27) is the generating function of  the amplitudes (m; f [ t ]  In; 
t) (Malkin et al., 1971; 1973) which are expressed in terms of  Hermite poly- 
nomials of  6N variables (Erd~lyi, 1953). 

Let us consider the spontaneous transitions between the states of the 
radiation field I Pco ;t)II~, [nx; t) and [/aco ;t)II~l m2; t) (ex, a = ex), where the 
prime means that the stationary state of  the radiation field corresponding to 
the frequency co is absent, and 1 ~'~o ; t) and I gco ; t) are the coherent states of 
the radiation field corresponding to the frequency c~. Then the integrand of  
the expression for the radiation power (2.24) will contain the additional 
multiplier 

Jad('r, t) = [1/~ol ee-iC°r+l~'~l 2ei°~r+ 2Re(I-koucoe-i2c°t)] exp ( -  t/gw - uco 12). 

If  the Hamiltonian H o is stationary, the formula (2.25) has the very simple 
form: 

~dtip(7, t) ~ j~ tp  (7) = i%/~(~O3X 
- -  13*XpCJ3N ) exp [ - ( l ~ l  2 + 1131=)/2 +~13"] 

(2.25') 

(Here we consider C = 0). In this case the expression (2.24) for calculating the 
radiation power in the dipole approximation transforms into its classical limit 
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when 

P in (~ )  = ~ (2)(~t Oto) , Pf=Tr-3N,  to~ojI>]> 1 

here 6 (2) is the delta function and the vector ao  gives the intiat point of  the 
charges in the phase space of  the system. 

Let us determine J(7-, t) in the general case without being bound to the 
dipole approximation. Taking into account the equality 

exp (¥1kxqb)p a = (pa + 6abkX) exp (~&xq b) 

we rewrite the interaction Hamiltonian (2.13) in the form that allows us to use 
the formutas (2.17) and (2.19). The further calculation is analogous to the 
corresponding calculation in the dipole case. In that manner we arrive at the 
following formula: 

J(r, t) = E {[O~i a +Kbai(T)][~¥1( T, t)]~j b + (~*)ia[[¥3( T,t) la? + [hi(T,  t)]] b 
a,b,i,] 

+ [B 1 (7")1 bbki} r b (7", t) (2.3 0) 

where 

T/b(r, t) = eb(e)j exp [~1 b(7") + ~2b(r)]<f3;f[t]l{~ka + Kb~(r)}; t> 

(2.31) 

In order to define the radiation power for transitions between the Fock 
states In; in) and Im;f>,  we must take into consideration the fact that the 
amplitude <13;f 1~; t> is the generating function of  the amplitudes <m; f ln ;  t> 
and the matrix elements of  the Weyl operators </31; f lDj] aj; t> are the generating 
t'unctions of  the matrix elements <m];flDfin]; t) (Malkin et al., 1971, 1973; 
Ivanova et al., 1975). 

3. Radiation o f  a Charged Particle in Homogeneous Varying Electric and 
Magnetic Fields 

As an example using the above-ment ioned  lbrmulas, let us consider the 
radiation of  the particle with charge e(e > 0) and mass m moving in the t i m e -  
dependent electromagnetic field with the potentials 

d = ½ [ ~ ( t ) r ] ,  ~0 = - 8( t ) r  (3.1) 

where 

a f ( t )  = (0, 0, J r ( t )} ,  g( t )  = {ga( t ) ,  82(0 ,  0}, d~af = 0 

In calculating we use the results obtained in Malkin and Man'ko (1970) 
Let us take it for granted that before the moment  of  time t = 0 the con- 

stant magnetic field 3¢'in existed. At the zero moment  the nonstationary elec- 
tric field emerged, and the magnetic field began to vary. In the remote future 
the electric field will vanish, and the magnetic field will be equal to ~ f  = const. 
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The Hamiltonian of  the particle in the field (3. t)  may be written in the 
form 

Ho(t )  : H i ( t )  + Hz,  [H~(t), Hz ] : 0 

Here the Hamiltonian Hz describes the free motion of  the charged particle 
along the Z axis. We designate the stationary orthonormalized states of  Hz by 
In3; t). The Hamiltonian H±(t) describes the motion in the X - Y  plane. It is a 
two-dimensional quadratic Hamiltonian. 

Let us consider the motion in the X - Y  plane in accord with the scheme 
obtained in Section 2, using the designations of  this section. In Malkin and 
Man'ko (1970) the invariants A l ( t  ) and A 2(0 with the commutat ion relations 
of  the boson operators have been constructed for the Hamiltonian H±(t): 

A 1 = 2-1/2@P + iea/ap* + ePo - e/So) 
(3.2) 

d 2  : 2-1/2(i iP * - e~/~p + iip~ - i e j~ )  

In equation (3.2) the variable p(t)  is 

p( t )  = - (x + iy) exp i f2 , a = - -  (3.3) 
m 

The function e(t) is determined as 

(; 0 g + ~22 e_ = 0 ,  e : l el exp i l e l  - 2  d ( 3 . 4 )  
4 ~ 0 

The variables Po(t)  and tSo(t ) are 

Po : - 2 - 1 / 2 ( i e ' 7 1  + e t a )  
(3.5) 

t5 o = _ 2-w2(i~.71 + ~,/~') 

where 
t t ij. 

7 1 = -  ee9 dr,  72 : - - - ~  e~*  dr  

0 0 

e 
• = ( 2 m ) l / 2 ( g l + i g 2 ) e x  p i f2 

In the paper by Malkin and Man'ko (1970) 

(3.6) 

v - ( 7 1 , 7 z )  

the coherent states lffl, ~2; t) - 
1~; t} and the transition amplitudes between the coherent states L~; t) and 
I~; t) were found: 

(~ ; f [ t ]  I~; t) = ~- t  exp { -  2-1(1~I 2 + I~l u + IYI 2) + ~-1 [(~ - y ) ~ - t -  7-/~¢(~t~2 

+ 7172 - ~172 - _~271) - ~ l  + ~17~ + ~27~ (3.7) 

t 

+ i ~ (~#p~ + ~*po)  dr} 
0 
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~j and ~j being constant complex numbers, and the parameters ~(l) and ,~(t) 
are expressed in terms of e(t) and its derivative ~(t) in the following way: 

e = (2 /~f )  1/2 [~ exp (ig2ft/2) -- i~ exp (--ig2yt/2)] 

= i (~ '2 f /2 )  1/2 [~ exp (ifZyt/2) + ir~ exp (--ifZff/2)] (3.8) 

e * ~ - -  e ~ *  = 2 i ,  If;l 2 - Ir~[ 2 = 1 

We shall discuss the radiation for the transitions between the states [~, n3; 
t) - 1~; t) tn3; t) and 1~, ha; t). We stick to the case when (e)z = 0 and kz = 0, 
i.e., we assume that a photon is emitted parallel to the X - Y  plane. 

According to the formulas of Section 2 the matrix element J(r, t) corre- 
sponding to equation (2.30) is given by 

l (r ,  t) = eV(r, t)(f~;f[t] I~ +×(r);  t) exp [~t ( r )  + ~2(r)] ,  

where 

"-(~1,~2) 
(3.9) 

5 
V(r, t) = ~ wu(r, t)uu(r) (3.10) 

#=1 

{u,,(r)) = {=+x(r), ~*, 1) (3.11) 

tct, 2 ( t ) - - 2 m l / 2 ( k x , y + i t c y , x ) e x  p +-i a ~  
0 

721( 0 = - i \ m ] .  Im (ky +ikx)PO exp - i  a (3.12) 

~2(t) = iIm [x(t)~*] 

The values w u are 

2mV2~(t) exp i a [~(t)X~e)(r) i~*(t)X(;)(r)] 

w3,40-,t) = e y ' x - W x ' ~  exp -+i g2 X(,)(~-) 
2 m  1/2~(t) o 

ws(r, t) = wa(r, t ) I~( t )7~( t ) -  ~*(t)72(t)] + w4(r, t)[~(t)7~(t) (3.13) 
T ) 

- ia(r)po(r)/2t} (ex, y - (e)x,y) X [bo(r) 
] 

X(-+) being defined as 

X(±)(r) = i(r)  -+ i~2(r)e(r)/2 
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So the radiation power of the particle in the fields (3.1) is given by the 
formula (2.24), where J0", t) is equation (3.9). In the dipole approximation it 
is necessary to consider × = qJl = ~2 = 0 in the expressions (3.9) and (3.11). 

Let us consider the case when at the moment of time t = 0 the vector poten- 
tial (3.1) abruptly changes from the constant value d i n  = ( - - . ~ i n y / 2 ,  ~(~inX/2, 
0) to the constant value @ = ( -  2/gfy/2, 2/gdX/2, 0), and the scalar potential 
(3.1) is equal to zero. Let the Glauber P functions be Pf = 1/7r 2 , Pin  = ~ ( 2 ) ( ~ _  
~o), where ~o gives the initial (t ~ - 0 )  coordinates xo,Yo and the velocities 
Vxo, Vy o of the particle which moves along the classical trajectory in the phase 
space. Summing over the polarization vectors and integrating with respect to the 
solid angle and the frequency, from the formula (2.24) we obtain the following 
expression for the dipole radiation power of the charge: 

2 2 2 2ain(~--~f2 _ ~n)(VxOY ° VyOXO) = (e2~fZ/6~2~n)[(~f + ['~in) @xO + VyO) + 

+ ~'~2n(~-2f i a i n ) 2 ( x 0  2 + y o  2) + ~'2in(~'2 f --  ~'2in) 2 ] (3 .14 )  

The expression (3.14) in the approximation I ~ol I >> 1, t ~o2 { >> 1 coincides 
with the expression for the radiation power, which can be obtained by calcu- 
lating according to the formulas of classical electrodynamics. If the magnetic 
field is constant, we must take ~2in = g2f. 

4. Conclusion 

In summing up we point out once more that using the coherent-state method 
has enabled us to calculate the radiation of quadratic systems to the first order 
in the magnitudes of the charges. In the formulas for the radiation power when 
the transitions between the coherent states are considered, it is easy to pro- 
ceed to the classical limit. 

As the Hamiltonian of the interaction of the radiation field with the charges 
in the dipole approximation is quadratic, we can calculate the dipole one- 
photon transition amplitudes exactly, i.e., without the series expansion in 
respect to the magnitudes of the charges. 

Let us note also that from the one-photon transition amplitudes (2.30) 
calculated without being bound to the dipole approximation, it is easy to 
obtain multipole and dipole one-photon transition amplitudes by means of the 
series expansion in respect to the wave vectors k. 

The coherent-state method employed for evaluating the radiation of non- 
relativistic quadratic systems can be easily generalized to relativistic quadratic 
systems by using the proper time representation. This possibility is connected 
with the fact that we can express the exponential factors exp (-+ikq a) in terms 
of the Weyl operators determining the coherent states. 

It is noteworthy that the coherent-state method enables us to evaluate both 
the radiation for transitions between the energy eigenstates and the radiation of 
wave packets such as coherent states. 
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